References
1. Национальные рекомендации по ведению пациентов с аневризмами брюшной аорты. Ангиология и сосудистая хирургия. 2013; 19 (2); прил.: 5 / National guidelines for the management of patients with abdominal aortic aneurysms. Angiologiya i sosudistaya khirurgiya. 2013; 19 (2); suppl.: 5 (in Russian).
2. Limet R., Sakalihassan N., Albert A. Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J. Vasc. Surg. 1991; 14: 540-8.
3. Sharp M.A., Collin J. A myth exposed: fast growth in diameter does not justify precocious abdominal aortic aneurysm repair. Eur. J. Vasc. Endovasc. Surg. 2003; 25: 408-11.
4. HansS.S., Jareunpoon O, Balasubramaniam M, Zelenock G.B. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J. Vasc. Surg. 2005; 41: 584-8.
5. Adolph R. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 1997; 25: 916-26.
6. Labruto F., Blomqvist L, Swedenborg J. Imaging the intraluminal thrombus of abdominal aortic aneurysms: techniques, findings, and clinical implications. J. Vasc. Interv. Radiol. 2011; 22: 1069-75.
7. Wang D.H.J. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 2002; 36: 598-604.
8. Roy J., Labruto F, Beckman M.O, Danielson J., Johansson G, Swedenborg J. Bleeding into the intraluminal thrombus in abdominal aortic aneurysms is associated with rupture. J. Vasc. Surg. 2008; 48: 1108-13.
9. SiegelC.L, CohanR.H., KorobkinM, AlpernM.B, CourneyaD.L., Leder R.A. Abdominal aortic aneurysm morphology: CT features in patients with ruptured and non ruptured aneurysms. AJR. Am. J. Roentgenol. 1994; 163: 1123-9.
10. GuimarSes T.A., Garcia G.N., Dalio M.B., Bredarioli M, Be- zerra C.A., Morlya T. Morphological aspects of mural thrombi deposition residual lumen route in infrarenal abdominal aorta aneurisms. Acta Cir. Bras. 2008; 23 (Suppl. 1): 151-6.
11. Simao da Silva E, Rodrigues A.J, Magalhaes Castro de Tolosa E, Rodrigues C.J., Villas Boas do Prado G, Nakamoto J.C. Morphology and diameter of infrarenal aortic aneurysms: a prospective autopsy study. Cardiovasc. Surg. 2000; 8: 526-32.
12. Vorp D.A., LeeP.C., Wang D.H. et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 2001; 34: 291-9.
13. Kazi M, Roy J., Paulsson-Berne G. et al. Difference in matrixdegrading protease expression and activity between thrombus- free and thrombuscovered wall of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 2005; 25: 1341-6.
14. Woff Y.G, Thomas W.S., Brennan F.J, Goff W.G., Sise M.J, Bernstein E.F. Computed tomography scanning findings associated with rapid expansion of abdominal aortic aneurysms. J. Vasc. Surg. 1994; 20: 529-35.
15. Satta J., Laara E, Juvonen T. Intraluminal thrombus predicts rupture of an abdominal aortic aneurysm. J. Vasc. Surg. 1996; 23: 737-9.
16. Dobrin P.B. Pathophysiology and pathogenesis of aortic aneurysms. Current concepts. Surg. Clin. North. Am. 1989; 69: 687-703.
17. Schurink G.W.H., van Baalen J.M., Visser M.J.T., van Bo- ckel J.H. Thrombus within an aortic aneurysm does not reduce pressure on the aneurismal wall. J. Vasc. Surg. 2000; 31: 501-6.
18. Johansen K. Aneurysms. Sci. Am. 1982; 247: 110-25.
19. Faggioloi G, Stella A, Gargiulo M, Tarantini S., DAddato M, Ricotta J.J. Morphology of small aneurysms, definition and impact on risk of rupture. Am. J. Surg. 1994; 168: 131-5.
20. Kushihashi T, Munechika H, Matsui S., Mortitani T, Horichi Y, Hishida T. CT of abdominal aortic aneurysms, aneurysmal size and thickness of intra-aneurysmal thrombus as risk factors of rupture. Nippon Acta Radiol. 1991; 51: 217-9.
21. Pillari G, Chang J.B, Zito T. Computed tomography of abdominal aortic aneurysm: an in-vivo pathological report with a note on dynamic predictors. Arch. Surg. 1988; 123: 727-32.
22. Di Martino E. Biomechanics of endoluminal thrombus: experimental characterization and structural static computational analysis. Eur. J. Endovasc. Surg. 1998; 15: 290-9.
23. Inzoli F., Boschetti F., Zappa M, Longo T., Fumero R. Biomechanical factors in abdominal aortic aneurysm rupture. Eur. J. Vasc. Surg. 1993; 7: 667-74.
24. Mower W.R., Quinones W.J., Gambhir S.S. Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J. Vasc. Surg. 1997; 26: 602-8.
25. Vorp D.A., Raghavan M.L., Muluk S.C., Makaroun M.S., Steed D.L., Shapiro R. et al. Wall strength and stiffness of aneurysmal and nonaneurysmal abdominal aorta. Ann. N. Y. Acad. Sci. 1996; 800: 274-7.
26. Baxter B.T., McGee G.S., Shively V.P, Drummond I.A.S., Dixit S.N., Yamauchi M. et al. Elastin content, cross-links, and mRNA in normal and aneurysmal human aorta. J. Vasc. Surg. 1992; 16: 192-200.
27. Menashi S., Greenhalgh R.M., Powell J.T. Collagen in abdominal aortic aneurysm: typing, content and degradation. J. Vasc. Surg. 1987; 6: 578-82.
28. Rizzo R.J., McCarthy W.J, Dixit S.N., Lilly M.P, Shively V.P, Flinn W.R. et al. Collagen types and matrix protein content in human abdominal aortic aneurysms. J. Vasc. Surg. 1989; 10: 365-73.
29. SakalihasanN., Heyeres A, NusgensB.V., LimetR., Lapiere C.M. Modifications of the extracellular matrix of aneurysmal abdominal aortas as a function of their size. Eur. J. Vasc. Surg. 1993; 7: 633-7.
30. Verloes A., Sakalihasan N., Limet R., Koulischer L. Genetic aspects of abdominal aortic aneurysm. Ann. N. Y. Acad. Sci. 1996; 800: 44-55.
31. McMillan W.D., Patterson B.K., Keen R.R., Pearch W.H. In situ localization and quantification of seventy-two-kiiodaiton type IV coiiagenase in aneurysmal, occlusive, and normal aorta. J. Vasc. Surg. 1995; 22: 295-305.
32. McMillan W.D., Patterson B.K., Keen R.R., Shively V.P., Capelin M., Pearce W.H. In situ localization and quantification of mRNA for 92kD type IV coiiagenase and its inhibitor in aneurysmal, occlusive, and normal aorta. Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1139-44.
33. NewmanK.M., Jean-Claude J., HongL., Scholes J.V, Ogata Y, Nagase H. et ai. Cellular localization of matrix metaiiopro- teinases in the abdominal aortic aneurysm wail. J. Vasc. Surg. 1994; 20: 814-20.
34. Thompson J.F., Mullee M.A., Bell P.R., Campbell W.B., Chant A.D., Darke S.G. et ai. Intraoperative heparinization, blood loss and myocardial infarction during aortic aneurysm surgery: a joint vascular research group study. Eur. J. Vasc. Endovasc. Surg. 1996; 12: 86-90.
35. Vorp D.A., WangD.H.J., WebsterM.W., Federspiel W.J. Effect of intraluminal thrombus thickness and bulge diameter on the oxygen flow in abdominal aortic aneurysm. J. Biomech. Eng. 1998; 120: 579-83.
36. Tsukamoto Y, Kuwabara K, Hirota S, Ikeda J, Stern D, Yanagi H. et ai. 150-kD oxygen-regulated protein is expressed in human atherosclerotic plaques and allows mononuclear phagocytes to with stand cellular stress on exposure to hypoxia and modified low density lipoprotein. J. Clin. Invest. 1996; 98: 1930-41.
37. Jean-Claude J., Newman K.M., Li H., Gregory A.K., Tilson M.D. Possible key role for piasmin in the pathogenesis of abdominal aortic aneurysms. Surgery. 1994; 116: 472-8.
38. Albina J.E., Henry W.L. Jr, Mastrofrancesco B., Martin B.A., Reichner J.S. Macrophage activation by culture in an anoxic environment. J. Immunol. 1995; 155: 4391-6.
39. Compeau C.G., Ma J., DeCampos K.N., Waddell T.K., Bris- seau G.F., Slutsky A.S. et ai. In situ ischemia and hypoxia enhance alveolar macrophage tissue factor expression. Am. J. Respir. Cell. Mol. Biol. 1994; 11: 446-55.
40. Melillo G., Taylor L.S., Brooks A., Cox G.W., Varesio L. Regulation of inducible nitric oxide synthase expression in IFN-gamma-treated murine macrophages cultured under hypoxic conditions. J. Immunol. 1996; 157: 2638-44.
41. Scannell G., Waxman K., Kaml G.J., loli G., Gatanaga T., Yamamoto R. et ai. Hypoxia induces a human macrophage cell line to release tumor necrosis factor-alpha and its soluble receptors in vitro. J. Surg. Res. 1993; 54: 281-5.
42. West M.A., Li M.H., SeatterS.C., Bubrick M.P. Pre-exposure to hypoxia or septic stimuli differentially regulates endotoxin release of tumor necrosis factor, interleukin-6, interleukin-1, prostaglandin E2, nitric oxide, and superoxide by macrophages. J. Trauma. 1994; 37: 82-90.
43. Campbell E.J., Wald M.S. Hypoxic injury to human alveolar macrophages accelerates release of previously bound neutrophil elastase: implications for lung connective tissue injury including pulmonary emphysema. Am. Rev. Respir. Dis. 1983; 127: 631-5.
44. Berse B., Hunt J.A., Diegel R.J., Morganelli P, Yeo K., Brown F. et ai. Hypoxia augments cytokine (transforming growth factor-beta (TGFbeta) and IL-1)-induced vascular endothelial growth factor secretion by human synovial fibroblasts. Clin. Exp. Immunol. 1999; 115: 176-82.